訂閱
糾錯(cuò)
加入自媒體

拿下AI大時(shí)代的“操作系統(tǒng)”,飛槳如何為中國贏得全球深度學(xué)習(xí)話語權(quán)?

2019-10-19 09:08
曾響鈴
關(guān)注

拿下AI大時(shí)代的“操作系統(tǒng)”,飛槳如何為中國贏得全球深度學(xué)習(xí)話語權(quán)?

任何一個(gè)新興科技領(lǐng)域在經(jīng)過草莽式的發(fā)展后,必然無法逃離“社會(huì)化大分工”的普遍行業(yè)邏輯,出現(xiàn)承擔(dān)起基本能力輸出與服務(wù)的巨頭平臺(tái),而合作伙伴、客戶/用戶開始專注于事業(yè)本身的創(chuàng)新與創(chuàng)意。

深度學(xué)習(xí)就是這樣一個(gè)時(shí)代的產(chǎn)物。

在2019年中關(guān)村論壇上,百度所主辦的平行論壇“AI時(shí)代的深度學(xué)習(xí)技術(shù)與應(yīng)用創(chuàng)新論壇”中,百度PaddlePaddle(中文名“飛槳”)深度學(xué)習(xí)平臺(tái)被重點(diǎn)關(guān)注。

正如該論壇上深度學(xué)習(xí)知名學(xué)者、馬里蘭大學(xué)帕克分校教授Dinesh Manocha在例舉大量機(jī)器人和自動(dòng)駕駛技術(shù)AI研發(fā)與應(yīng)用后對(duì)飛槳的評(píng)價(jià)所說,“飛槳是一個(gè)非常好的通用架構(gòu),并且它是非常靈活的……它是一個(gè)非常好的開放平臺(tái)……希望在未來能夠?qū)⒏嗟哪P蛻?yīng)用在不同的行業(yè)里”,毫無疑問,飛槳已經(jīng)越來越發(fā)揮出AI浪潮的幕后推動(dòng)價(jià)值——看得見的是百度AI技術(shù)產(chǎn)業(yè)落地,看不見的是“飛槳”。

這些也意味著深度學(xué)習(xí)平臺(tái)將很大程度掌控AI時(shí)代的話語權(quán),這個(gè)被稱為AI時(shí)代“操作系統(tǒng)”的東西,在全球范圍內(nèi)的話語權(quán)戰(zhàn)爭(zhēng)也已經(jīng)打響,F(xiàn)acebook PyTorch最近在時(shí)隔僅2個(gè)月就急不可耐地發(fā)布PyTorch 1.3,“硬剛”Google在10月1日發(fā)布的Tensorflow 2.0,硝煙彌漫……

只不過這一次,中國徹底準(zhǔn)備好了。

“操作系統(tǒng)”混戰(zhàn)巨頭各有“調(diào)性”,中國鎖定“產(chǎn)業(yè)智能”

總體而言,全球范圍內(nèi)叫得上號(hào)的深度學(xué)習(xí)框架主要有四大玩家,三個(gè)位于美國(微軟Cognitive Services、Facebook Pytorch、Google TensorFlow),中國僅有一根“獨(dú)苗”(百度PaddlePaddle),它們是AI時(shí)代的“操作系統(tǒng)”混戰(zhàn)的主要力量。

而雖然都是深度學(xué)習(xí),巨頭們的產(chǎn)品也各有不同之處,這也決定了短期的競(jìng)爭(zhēng)格局。

先從中國看起,當(dāng)談?wù)撈鹕疃葘W(xué)習(xí)框架時(shí),盡管“飛槳”也具備多方面的適應(yīng)性,例如其用戶既有Intel、Nvida、華為、中國聯(lián)通、中信銀行等產(chǎn)業(yè)組織,也有北京航空航天大學(xué)、中國科學(xué)院大學(xué)等學(xué)院派,但總體而言,飛槳的“人設(shè)”在所有玩家中與產(chǎn)業(yè)集合最為緊密。

在2019年中關(guān)村論壇深度學(xué)習(xí)平行論壇上,百度王海峰就直接表示,“希望更好的把深度學(xué)習(xí)技術(shù)標(biāo)準(zhǔn)化、自動(dòng)化和模塊化,應(yīng)用于各行各業(yè)的工業(yè)大生產(chǎn),去賦能各行各業(yè),幫助產(chǎn)業(yè)的智能化轉(zhuǎn)型!

這也體現(xiàn)在了飛槳面向產(chǎn)業(yè)應(yīng)用的代表性技術(shù)優(yōu)勢(shì)上,目前飛槳其開放了覆蓋多領(lǐng)域的工業(yè)級(jí)模型庫,支持100多個(gè)經(jīng)過產(chǎn)業(yè)實(shí)踐長期打磨的主流模型,其中包括在國際競(jìng)賽中奪得冠軍的模型,同時(shí)開源開放200多個(gè)預(yù)訓(xùn)練模型,官方稱目標(biāo)是“助力快速的產(chǎn)業(yè)應(yīng)用”,這個(gè)表述中,與產(chǎn)業(yè)升級(jí)聯(lián)動(dòng)的調(diào)性已經(jīng)很明顯。

從實(shí)際案例來看,例如在傳統(tǒng)工業(yè)質(zhì)檢領(lǐng)域,致力于機(jī)器視覺在工業(yè)質(zhì)檢方面應(yīng)用的大恒圖像就與飛槳合作,解決了傳統(tǒng)基于機(jī)器學(xué)習(xí)特征工程方法對(duì)外觀缺陷類質(zhì)檢無法快速進(jìn)行場(chǎng)景切換、場(chǎng)景與場(chǎng)景之間的遷移研究成本高、識(shí)別效果差等痛點(diǎn)問題,在飛槳深度學(xué)習(xí)的框架下生成模型,實(shí)現(xiàn)產(chǎn)品缺陷分類,實(shí)際應(yīng)用到流水線檢出率已達(dá)99.8%。

類似的案例還有很多,但總而言之,飛槳走的產(chǎn)業(yè)智能化升級(jí)聯(lián)動(dòng)路線在全球范圍內(nèi)十分獨(dú)特,反過來看,這恰恰也是中國現(xiàn)階段獨(dú)一無二的產(chǎn)業(yè)發(fā)展現(xiàn)實(shí)所決定,飛槳順應(yīng)了這個(gè)趨勢(shì)。

而在國際上,準(zhǔn)確地說是在美國,深度學(xué)習(xí)框架的競(jìng)逐頗有“百花齊放”的意味。

例如微軟的Cognitive Services注重垂直能力經(jīng)營,其深度學(xué)習(xí)平臺(tái)服務(wù)涵蓋圖像、視頻、文本和語音等各個(gè)領(lǐng)域,2018年重點(diǎn)推出的完全自動(dòng)化的平臺(tái)Microsoft Custom Vision Services就是視覺領(lǐng)域的強(qiáng)化,這符合微軟一貫從垂直領(lǐng)域做產(chǎn)品而不做大平臺(tái)的調(diào)性。

而Facebook的Pytorch則更像是一個(gè)學(xué)究型開放平臺(tái),實(shí)驗(yàn)室氣質(zhì)十分濃厚,Pytorch一開始就致力于為研究者服務(wù),例如在2019年,引用PyTorch的論文數(shù)量就爆速增長了194%,在學(xué)院派AI陣營中頗有地位。

不過,F(xiàn)acebook也在試圖改變這一境況,現(xiàn)在包括Uber等大公司也開始采用PyTorch。

與之對(duì)應(yīng)的是,是有評(píng)論認(rèn)為,“PyTorch搞定研究,TensorFlow搞定業(yè)界”——作為Google家的產(chǎn)品,TensorFlow比冤家對(duì)頭PyTorch更有現(xiàn)實(shí)應(yīng)用色彩,用來為實(shí)驗(yàn)室刷AI論文的痕跡不那么濃。

而TensorFlow打出旗號(hào)——任何人都可以用,學(xué)生、研究員、愛好者、極客、工程師、開發(fā)者、發(fā)明家、創(chuàng)業(yè)者——其在安卓之外再度壟斷一個(gè)操作系統(tǒng)的野心也十分明顯了。

產(chǎn)業(yè)應(yīng)用“必要+充分”,中國深度學(xué)習(xí)具備唯一的生態(tài)“完全體”基因

深度學(xué)習(xí)在中國的境況,與互聯(lián)網(wǎng)在中國的境況類似:龐大的應(yīng)用市場(chǎng)和需求,哺育出最廣泛、全面的前沿技術(shù)與產(chǎn)品,這些技術(shù)和產(chǎn)品在持續(xù)“供養(yǎng)”下又能極大滿足市場(chǎng)需求,并實(shí)現(xiàn)國際領(lǐng)先。

互聯(lián)網(wǎng)、AI等的彎道超車就是這個(gè)邏輯,這種“必要+充分”的雙向循環(huán),即是典型的生態(tài)“完全體”,是中國所有前沿技術(shù)應(yīng)有的獨(dú)特優(yōu)勢(shì),飛槳也處在這樣的環(huán)境中,只不過是放到產(chǎn)業(yè)視角下看。

1、越是產(chǎn)業(yè)規(guī)模龐大的國家,越需要集中的深度學(xué)習(xí)能力共享

深度學(xué)習(xí)平臺(tái)本質(zhì)是AI能力的一種云上“共享經(jīng)濟(jì)”,平臺(tái)把自己的知識(shí)儲(chǔ)備拿出來,通過框架設(shè)計(jì)共享給更多開發(fā)者,“操作系統(tǒng)”的意義即在于此。

只有需求這種能力共享的AI項(xiàng)目越多,深度學(xué)習(xí)平臺(tái)的“共享”價(jià)值才更能凸顯。

作為全球GDP排名第二,制造業(yè)第一,服務(wù)業(yè)蓬勃發(fā)展的東方大國,中國產(chǎn)業(yè)的智能化需求催生出全球最為龐大的深度學(xué)習(xí)需求,飛槳的出現(xiàn)和壯大是必然。

而反過來,飛槳本身也必須適應(yīng)這種龐大、多樣化的共享需求,其中既有能力上的廣泛適應(yīng)需求(不能偏科),也有系統(tǒng)上的集中承載需求(要能扛得。。

飛槳的一個(gè)領(lǐng)先的技術(shù)優(yōu)勢(shì)之一,就是支持超大規(guī)模深度學(xué)習(xí)模型的訓(xùn)練。根據(jù)官宣,目前飛槳突破了超大規(guī)模深度學(xué)習(xí)模型訓(xùn)練技術(shù),是世界首個(gè)支持千億特征、萬億參數(shù)、數(shù)百節(jié)點(diǎn),攻克了超大規(guī)模深度學(xué)習(xí)模型在線學(xué)習(xí)難題,且實(shí)現(xiàn)了萬億規(guī)模參數(shù)模型實(shí)時(shí)更新的開源大規(guī)模訓(xùn)練平臺(tái)。

能力與需求“握手”,中國大本營是飛槳國際化競(jìng)逐的底氣。

2、產(chǎn)業(yè)的“躍遷式”發(fā)展,讓中國更需要深度學(xué)習(xí)平臺(tái)

除了應(yīng)用的廣泛,如何讓應(yīng)用更便捷實(shí)現(xiàn),是所有深度學(xué)習(xí)平臺(tái)競(jìng)逐的重點(diǎn),無論是PyTorch 1.3還是Tensorflow 2.0的版本更新,都打出了易用、好實(shí)現(xiàn)這張牌。

而這件事放到眼下的中國,情形更為特殊。

中國金融科技的發(fā)展,是在原本傳統(tǒng)的金融業(yè)基礎(chǔ)上跨越而來,反而領(lǐng)先了國外。而中國的產(chǎn)業(yè)演化也在經(jīng)歷同樣的過程,從十分傳統(tǒng)到十分智能的大跨度式跳躍,快速開發(fā)與部署的需求更為強(qiáng)烈。

但是,AI這件事必須投入大量人力物力去鉆研,不論是傳統(tǒng)領(lǐng)域,還是做服務(wù)的創(chuàng)業(yè)企業(yè)都很難支撐。

當(dāng)飛槳打出“開發(fā)便捷的產(chǎn)業(yè)級(jí)深度學(xué)習(xí)框架”旗號(hào)時(shí),也就是在契合這樣的需求,其采用基于編程邏輯的組網(wǎng)范式,對(duì)于普通開發(fā)者而言更容易上手,符合他們的開發(fā)習(xí)慣,同時(shí),平臺(tái)支持聲明式和命令式編程,簡言之就是兼具開發(fā)的靈活性和高性能。在這種情況下,飛槳亦實(shí)現(xiàn)了網(wǎng)絡(luò)結(jié)構(gòu)自動(dòng)設(shè)計(jì),模型效果超越人類專家。

這些屬性無疑能幫助那些需要躍遷式發(fā)展的企業(yè)在AI領(lǐng)域快速使用深度學(xué)習(xí)的成型算法,解放出更多精力放在重要業(yè)務(wù)上。

3、已有豐富的案例落地,產(chǎn)生AI領(lǐng)域的低成本知識(shí)裂變價(jià)值

先來看一個(gè)案例。

“紅脂大小蠹”長期侵害中國植被森林區(qū),對(duì)生態(tài)影響很大,過去的解決辦法是人力翻山越嶺巡查,找到害蟲聚集區(qū)采取措施。除了專業(yè)人才需求大,也容易出現(xiàn)巡查漏洞,貽誤治蟲時(shí)機(jī)。

嘉楠捷思、百度飛槳和北京林業(yè)大學(xué)共同合作研發(fā)出了智能害蟲檢測(cè)系統(tǒng)解決了這個(gè)林業(yè)的痛點(diǎn)問題,利用搭載AI芯片的攝像頭模組進(jìn)行蟲子的檢測(cè)與識(shí)別,分析病蟲害當(dāng)中蟲子的種類,以及害蟲集中在哪個(gè)層面,以進(jìn)行針對(duì)性的防治。

在這一過程中,飛槳提供框架,嘉楠捷思利用飛槳快速開發(fā)識(shí)別模型并通過芯片攝像頭模組落地,北京林業(yè)大學(xué)則提供害蟲、森林知識(shí)圖譜,三方共同完成的“智能害蟲檢測(cè)項(xiàng)目”已經(jīng)開始走向商業(yè)化。

通過一個(gè)三方合作,飛槳的圖像識(shí)別技術(shù)即順利實(shí)現(xiàn)了產(chǎn)業(yè)應(yīng)用,在林業(yè)領(lǐng)域?qū)崿F(xiàn)了一個(gè)知識(shí)裂變的案例。

類似的案例還要更多,王海峰在2019年中關(guān)村論壇深度學(xué)習(xí)平行論壇上把飛槳定義為“一個(gè)源于產(chǎn)業(yè)實(shí)踐的深度學(xué)習(xí)平臺(tái)”,顯然,深度學(xué)習(xí)平臺(tái)的開放與實(shí)踐,產(chǎn)生了更大的AI產(chǎn)業(yè)智能化實(shí)踐價(jià)值,同一知識(shí)在不斷裂變出大量案例并走向現(xiàn)實(shí)和商業(yè)應(yīng)用。

AI與產(chǎn)業(yè)升級(jí),兩場(chǎng)不能失敗的戰(zhàn)爭(zhēng)、一個(gè)“幕后英雄”

Windows操作系統(tǒng)控制PC時(shí)代的交互窗口,現(xiàn)在控制著“生產(chǎn)力工具”,安卓、iOS控制著移動(dòng)互聯(lián)網(wǎng)時(shí)代的交互窗口,主宰了“消費(fèi)力”窗口。

如果說過去沒有掌握操作系統(tǒng)的話語權(quán)還尚能接受,只是在被扼住咽喉時(shí)難受一下,而AI大時(shí)代的“操作系統(tǒng)”一旦喪失主動(dòng)權(quán),其影響將是廣泛的。畢竟,全民AI、全面AI的時(shí)代即將到來,深度學(xué)習(xí)的話語權(quán)間接影響了一個(gè)國家的方方面面,從消費(fèi)到產(chǎn)業(yè),從個(gè)人到組織,都無法逃脫影響。

這種“操作系統(tǒng)”的遏制力體現(xiàn)在,一旦大多數(shù)開發(fā)者都習(xí)慣于某一套框架下的AI應(yīng)用開發(fā)方式,將帶來很大的遷移成本,而平臺(tái)方出于某些目的一旦限制開放、限制專利應(yīng)用,將直接鎖死下游開發(fā)者。

類似的在操作系統(tǒng)上的教訓(xùn),我們已經(jīng)深深見識(shí)過了,未來AI時(shí)代不能再如此了。

這也說明,全球視野下的深度學(xué)習(xí)平臺(tái)的PK,不只在技術(shù)優(yōu)劣更在生態(tài)構(gòu)建,盡快擴(kuò)大生態(tài)、提升行業(yè)影響力是與技術(shù)同等重要的事。

好在,飛槳的一些動(dòng)作客觀上在實(shí)現(xiàn)這種影響力的構(gòu)建。

飛槳代表性的領(lǐng)先技術(shù)優(yōu)勢(shì)之一是多端多平臺(tái)部署的高性能推理引擎,也即不僅兼容其他開源框架訓(xùn)練的模型,還可以輕松地部署到不同架構(gòu)的平臺(tái)設(shè)備上。同時(shí),經(jīng)過跟華為麒麟NPU的軟硬一體優(yōu)化,飛槳在NPU上的推理速度進(jìn)一步突破。

這些都是兼容并蓄的表現(xiàn),飛槳是一個(gè)靈活的、可以接納所有不同開發(fā)者、開發(fā)條件的“操作系統(tǒng)”,具有理論上無限的延展性。也只有這樣,才能保證影響力的持續(xù)擴(kuò)大、生態(tài)的全方位滲透和充實(shí),而不是“封閉王國”。

同時(shí),在全球產(chǎn)業(yè)升級(jí)浪潮下,各國都在拼轉(zhuǎn)型拼升級(jí),開放的深度學(xué)習(xí)平臺(tái)作為推動(dòng)產(chǎn)業(yè)智能化的重要內(nèi)容,無疑是大國戰(zhàn)略一個(gè)更為底層的構(gòu)成要素,更類似于“幕后英雄”——它不直接表現(xiàn)出競(jìng)爭(zhēng)優(yōu)勢(shì),卻在背后影響著國家的整體競(jìng)爭(zhēng)力,既有直接的產(chǎn)業(yè)推動(dòng),也有國際AI話語權(quán)的掌控。

這一次,中國能不能不再被扼住咽喉,甚至反客為主,拭目以待吧。

聲明: 本文由入駐維科號(hào)的作者撰寫,觀點(diǎn)僅代表作者本人,不代表OFweek立場(chǎng)。如有侵權(quán)或其他問題,請(qǐng)聯(lián)系舉報(bào)。

發(fā)表評(píng)論

0條評(píng)論,0人參與

請(qǐng)輸入評(píng)論內(nèi)容...

請(qǐng)輸入評(píng)論/評(píng)論長度6~500個(gè)字

您提交的評(píng)論過于頻繁,請(qǐng)輸入驗(yàn)證碼繼續(xù)

  • 看不清,點(diǎn)擊換一張  刷新

暫無評(píng)論

暫無評(píng)論

    掃碼關(guān)注公眾號(hào)
    OFweek人工智能網(wǎng)
    獲取更多精彩內(nèi)容
    文章糾錯(cuò)
    x
    *文字標(biāo)題:
    *糾錯(cuò)內(nèi)容:
    聯(lián)系郵箱:
    *驗(yàn) 證 碼:

    粵公網(wǎng)安備 44030502002758號(hào)