CVPR2020 | 夜間檢測(cè)挑戰(zhàn)賽兩冠一亞,為自動(dòng)駕駛保駕護(hù)航
當(dāng)然這也帶來(lái)了模型參數(shù)大小和訓(xùn)練時(shí)間的增加,屬于 speed–accuracy trade-off。該團(tuán)隊(duì)也嘗試過(guò)其他的改進(jìn)方式,但最終還是選擇了實(shí)用性更強(qiáng)的 CBNet,該方法不用再額外擔(dān)心預(yù)訓(xùn)練權(quán)重的問(wèn)題。
該團(tuán)隊(duì)選擇了性價(jià)比較高的雙 backbone 模型結(jié)構(gòu)。
3. 數(shù)據(jù)增強(qiáng)
該團(tuán)隊(duì)發(fā)現(xiàn) Pixel-level 的增強(qiáng)方式導(dǎo)致了性能結(jié)果大幅下降,因此沒有在這個(gè)方向繼續(xù)嘗試。
而圖像增強(qiáng)方式 Retinex,從視覺上看帶來(lái)了圖像增強(qiáng),但是該方法可能破壞了原有圖片的結(jié)構(gòu)信息,導(dǎo)致最終結(jié)果沒有提升。
于是,該團(tuán)隊(duì)最終選擇了 Spatial-level 的增強(qiáng)方式,使得結(jié)果有一定的提升。
實(shí)驗(yàn)細(xì)節(jié)
1. 將 Cascade rcnn + DCN + FPN 作為 baseline;
2. 將原有 head 改為 Double head;
3. 將 CBNet 作為 backbone;
4. 使用 cascade rcnn COCO-Pretrained weight;
5. 數(shù)據(jù)增強(qiáng);
6. 多尺度訓(xùn)練 + Testing tricks。
實(shí)驗(yàn)結(jié)果
下圖展示了該團(tuán)隊(duì)使用的方法在本地驗(yàn)證集上的結(jié)果:
該團(tuán)隊(duì)將今年的成績(jī)與去年 ICCV 2019 同賽道冠軍算法進(jìn)行對(duì)比,發(fā)現(xiàn)在不使用額外數(shù)據(jù)集的情況下,去年單模型在 9 個(gè)尺度的融合下達(dá)到 11.06,而該團(tuán)隊(duì)的算法在只用 2 個(gè)尺度的情況下就可以達(dá)到 10.49。
未來(lái)工作
該團(tuán)隊(duì)雖然獲得了不錯(cuò)的成績(jī),但也基于已有的經(jīng)驗(yàn)提出了一些未來(lái)工作方向:
1. 由于數(shù)據(jù)的特殊性,該團(tuán)隊(duì)嘗試使用一些增強(qiáng)方式來(lái)提高圖片質(zhì)量、亮度等屬性,使圖片中的行人更易于檢測(cè)。但結(jié)果證明這些增強(qiáng)方式可能破壞原有圖片結(jié)構(gòu),效果反而降低。該團(tuán)隊(duì)相信會(huì)有更好的夜間圖像處理辦法,只是還需要更多研究和探索。
2. 在允許使用之前幀信息的賽道二中,該團(tuán)隊(duì)僅使用了一些簡(jiǎn)單的 IoU 信息。由于收集這個(gè)數(shù)據(jù)集的攝像頭一直在移動(dòng),該團(tuán)隊(duì)之前在類似的數(shù)據(jù)集上使用過(guò)一些 SOTA 的方法,卻沒有取得好的效果。他們認(rèn)為之后可以在如何利用時(shí)序幀信息方面進(jìn)行深入的探索。
3. 該領(lǐng)域存在大量白天行人檢測(cè)的數(shù)據(jù)集,因此該團(tuán)隊(duì)認(rèn)為之后可以嘗試 Domain Adaption 方向的方法,以充分利用行人數(shù)據(jù)集。
參考文獻(xiàn):
[1] Lin T Y , Dollár, Piotr, Girshick R , et al. Feature Pyramid Networks for Object Detection[J]. 2016.
[2] Dai J, Qi H, Xiong Y, et al. Deformable Convolutional Networks[J]. 2017.
[3] Cai Z , Vasconcelos N . Cascade R-CNN: Delving into High Quality Object Detection[J]. 2017.
[4] Xie S , Girshick R , Dollar P , et al. Aggregated Residual Transformations for Deep Neural Networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, 2017.
[5] Bochinski E , Eiselein V , Sikora T . High-Speed tracking-by-detection without using image information[C]// 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 2017.
[6] Henriques J F , Caseiro R , Martins P , et al. High-Speed Tracking with Kernelized Correlation Filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):583-596.
[7] Song G , Liu Y , Wang X . Revisiting the Sibling Head in Object Detector[J]. 2020.
[8] Li A , Yang X , Zhang C . Rethinking Classification and Localization for Cascade R-CNN[J]. 2019.
[9] Wu, Y., Chen, Y., Yuan, L., Liu, Z., Wang, L., Li, H., & Fu, Y. (2019). Rethinking Classification and Localization in R-CNN. ArXiv, abs/1904.06493.
[10] Liu, Y., Wang, Y., Wang, S., Liang, T., Zhao, Q., Tang, Z., & Ling, H. (2020). CBNet: A Novel Composite Backbone Network Architecture for Object Detection. ArXiv, abs/1909.03625.

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
3月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
4月30日立即下載>> 【村田汽車】汽車E/E架構(gòu)革新中,新智能座艙挑戰(zhàn)的解決方案
-
5月15-17日立即預(yù)約>> 【線下巡回】2025年STM32峰會(huì)
-
即日-5.15立即報(bào)名>>> 【在線會(huì)議】安森美Hyperlux™ ID系列引領(lǐng)iToF技術(shù)革新
-
5月15日立即下載>> 【白皮書】精確和高效地表征3000V/20A功率器件應(yīng)用指南
-
5月16日立即參評(píng) >> 【評(píng)選啟動(dòng)】維科杯·OFweek 2025(第十屆)人工智能行業(yè)年度評(píng)選
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達(dá)AI統(tǒng)治的開始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 “AI寒武紀(jì)”爆發(fā)至今,五類新物種登上歷史舞臺(tái)
- 4 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 5 國(guó)產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計(jì)算迎來(lái)商業(yè)化突破,但落地仍需時(shí)間
- 7 東陽(yáng)光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開成長(zhǎng)空間
- 8 地平線自動(dòng)駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營(yíng)收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機(jī)器人東風(fēng)翻身?