一文詳解HiveSQL執(zhí)行計劃
在第二條sql語句前加上 explain,得到如下結(jié)果
hive (default)> explain select a.id,b.user_name from(select * from test1 where id>2 ) a join test2 b on a.id=b.id;
OK
Explain
STAGE DEPENDENCIES:
Stage-4 is a root stage
Stage-3 depends on stages: Stage-4
Stage-0 depends on stages: Stage-3
STAGE PLANS:
Stage: Stage-4
Map Reduce Local Work
Alias -> Map Local Tables:
$hdt$_0:test1
Fetch Operator
limit: -1
Alias -> Map Local Operator Tree:
$hdt$_0:test1
TableScan
alias: test1
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Filter Operator
predicate: (id > 2) (type: boolean)
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int)
outputColumnNames: _col0
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
HashTable Sink Operator
keys:
0 _col0 (type: int)
1 _col0 (type: int)
Stage: Stage-3
Map Reduce
Map Operator Tree:
TableScan
alias: b
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Filter Operator
predicate: (id > 2) (type: boolean)
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int), user_name (type: string)
outputColumnNames: _col0, _col1
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
Map Join Operator
condition map:
Inner Join 0 to 1
keys:
0 _col0 (type: int)
1 _col0 (type: int)
outputColumnNames: _col0, _col2
Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: _col0 (type: int), _col2 (type: string)
outputColumnNames: _col0, _col1
Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
File Output Operator
compressed: false
Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
table:
input format: org.a(chǎn)pache.hadoop.mapred.SequenceFileInputFormat
output format: org.a(chǎn)pache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
serde: org.a(chǎn)pache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Local Work:
Map Reduce Local Work
Stage: Stage-0
Fetch Operator
limit: -1
Processor Tree:
ListSink
大家有什么發(fā)現(xiàn),除了表別名不一樣,其他的執(zhí)行計劃完全一樣,都是先進(jìn)行 where 條件過濾,在進(jìn)行 join 條件關(guān)聯(lián)。說明 hive 底層會自動幫我們進(jìn)行優(yōu)化,所以這兩條sql語句執(zhí)行效率是一樣的。
以上僅列舉了3個我們生產(chǎn)中既熟悉又有點迷糊的例子,explain 還有很多其他的用途,如查看stage的依賴情況、排查數(shù)據(jù)傾斜、hive 調(diào)優(yōu)等,小伙伴們可以自行嘗試。
3. explain dependency的用法
explain dependency用于描述一段SQL需要的數(shù)據(jù)來源,輸出是一個json格式的數(shù)據(jù),里面包含以下兩個部分的內(nèi)容:
input_partitions:描述一段SQL依賴的數(shù)據(jù)來源表分區(qū),里面存儲的是分區(qū)名的列表,如果整段SQL包含的所有表都是非分區(qū)表,則顯示為空。
input_tables:描述一段SQL依賴的數(shù)據(jù)來源表,里面存儲的是Hive表名的列表。
使用explain dependency查看SQL查詢非分區(qū)普通表,在 hive cli 中輸入以下命令:
explain dependency select s_age,count(1) num from student_orc;
得到結(jié)果:
{"input_partitions":[],"input_tables":[{"tablename":"default@student_tb _orc","tabletype":"MANAGED_TABLE"}]}
使用explain dependency查看SQL查詢分區(qū)表,在 hive cli 中輸入以下命令:
explain dependency select s_age,count(1) num from student_orc_partition;
得到結(jié)果:
{"input_partitions":[{"partitionName":"default@student_orc_partition@ part=0"},
{"partitionName":"default@student_orc_partition@part=1"},
{"partitionName":"default@student_orc_partition@part=2"},
{"partitionName":"default@student_orc_partition@part=3"},
{"partitionName":"default@student_orc_partition@part=4"},
{"partitionName":"default@student_orc_partition@part=5"},
{"partitionName":"default@student_orc_partition@part=6"},
{"partitionName":"default@student_orc_partition@part=7"},
{"partitionName":"default@student_orc_partition@part=8"},
{"partitionName":"default@student_orc_partition@part=9"}],
"input_tables":[{"tablename":"default@student_orc_partition", "tabletype":"MANAGED_TABLE"}]
explain dependency的使用場景有兩個:
場景一:快速排除。快速排除因為讀取不到相應(yīng)分區(qū)的數(shù)據(jù)而導(dǎo)致任務(wù)數(shù)據(jù)輸出異常。例如,在一個以天分區(qū)的任務(wù)中,上游任務(wù)因為生產(chǎn)過程不可控因素出現(xiàn)異常或者空跑,導(dǎo)致下游任務(wù)引發(fā)異常。通過這種方式,可以快速查看SQL讀取的分區(qū)是否出現(xiàn)異常。
場景二:理清表的輸入,幫助理解程序的運行,特別是有助于理解有多重子查詢,多表連接的依賴輸入。
下面通過兩個案例來看explain dependency的實際運用:
案例一:識別看似等價的代碼
對于剛接觸SQL的程序員,很容易將
select * from a inner join b on a.no=b.no and a.f>1 and a.f<3;
等價于
select * from a inner join b on a.no=b.no where a.f>1 and a.f<3;
我們可以通過案例來查看下它們的區(qū)別:
代碼1:
select
a.s_no
from student_orc_partition a
inner join
student_orc_partition_only b
on a.s_no=b.s_no and a.part=b.part and a.part>=1 and a.part<=2;
代碼2:
select
a.s_no
from student_orc_partition a
inner join
student_orc_partition_only b
on a.s_no=b.s_no and a.part=b.part
where a.part>=1 and a.part<=2;
我們看下上述兩段代碼explain dependency的輸出結(jié)果:
代碼1的explain dependency結(jié)果:
{"input_partitions":
[{"partitionName":"default@student_orc_partition@part=0"},
{"partitionName":"default@student_orc_partition@part=1"},
{"partitionName":"default@student_orc_partition@part=2"},
{"partitionName":"default@student_orc_partition_only@part=1"},
{"partitionName":"default@student_orc_partition_only@part=2"}],
"input_tables": [{"tablename":"default@student_orc_partition","tabletype":"MANAGED_TABLE"}, {"tablename":"default@student_orc_partition_only","tabletype":"MANAGED_TABLE"}]}
代碼2的explain dependency結(jié)果:
{"input_partitions":
[{"partitionName":"default@student_orc_partition@part=1"},
{"partitionName" : "default@student_orc_partition@part=2"},
{"partitionName" :"default@student_orc_partition_only@part=1"},
{"partitionName":"default@student_orc_partition_only@part=2"}],
"input_tables": [{"tablename":"default@student_orc_partition","tabletype":"MANAGED_TABLE"}, {"tablename":"default@student_orc_partition_only","tabletype":"MANAGED_TABLE"}]}
通過上面的輸出結(jié)果可以看到,其實上述的兩個SQL并不等價,代碼1在內(nèi)連接(inner join)中的連接條件(on)中加入非等值的過濾條件后,并沒有將內(nèi)連接的左右兩個表按照過濾條件進(jìn)行過濾,內(nèi)連接在執(zhí)行時會多讀取part=0的分區(qū)數(shù)據(jù)。而在代碼2中,會過濾掉不符合條件的分區(qū)。
案例二:識別SQL讀取數(shù)據(jù)范圍的差別
代碼1:
explain dependency
select
a.s_no
from student_orc_partition a
left join
student_orc_partition_only b
on a.s_no=b.s_no and a.part=b.part and b.part>=1 and b.part<=2;
代碼2:
explain dependency
select
a.s_no
from student_orc_partition a
left join
student_orc_partition_only b
on a.s_no=b.s_no and a.part=b.part and a.part>=1 and a.part<=2;
以上兩個代碼的數(shù)據(jù)讀取范圍是一樣的嗎?答案是不一樣,我們通過explain dependency來看下:
代碼1的explain dependency結(jié)果:
{"input_partitions":
[{"partitionName": "default@student_orc_partition@part=0"},
{"partitionName":"default@student_orc_partition@part=1"}, …中間省略7個分區(qū)
{"partitionName":"default@student_orc_partition@part=9"},
{"partitionName":"default@student_orc_partition_only@part=1"},
{"partitionName":"default@student_orc_partition_only@part=2"}],
"input_tables": [{"tablename":"default@student_orc_partition","tabletype":"MANAGED_TABLE"}, {"tablename":"default@student_orc_partition_only","tabletype":"MANAGED_TABLE"}]}
代碼2的explain dependency結(jié)果:
{"input_partitions":
[{"partitionName":"default@student_orc_partition@part=0"},
{"partitionName":"default@student_orc_partition@part=1"}, …中間省略7個分區(qū)
{"partitionName":"default@student_orc_partition@part=9"},
{"partitionName":"default@student_orc_partition_only@part=0"},
{"partitionName":"default@student_orc_partition_only@part=1"}, …中間省略7個分區(qū)
{"partitionName":"default@student_orc_partition_only@part=9"}],
"input_tables": [{"tablename":"default@student_orc_partition","tabletype":"MANAGED_TABLE"}, {"tablename":"default@student_orc_partition_only","tabletype":"MANAGED_TABLE"}]}
可以看到,對左外連接在連接條件中加入非等值過濾的條件,如果過濾條件是作用于右表(b表)有起到過濾的效果,則右表只要掃描兩個分區(qū)即可,但是左表(a表)會進(jìn)行全表掃描。如果過濾條件是針對左表,則完全沒有起到過濾的作用,那么兩個表將進(jìn)行全表掃描。這時的情況就如同全外連接一樣都需要對兩個數(shù)據(jù)進(jìn)行全表掃描。
在使用過程中,容易認(rèn)為代碼片段2可以像代碼片段1一樣進(jìn)行數(shù)據(jù)過濾,通過查看explain dependency的輸出結(jié)果,可以知道不是如此。
4. explain authorization 的用法
通過explain authorization可以知道當(dāng)前SQL訪問的數(shù)據(jù)來源(INPUTS) 和數(shù)據(jù)輸出(OUTPUTS),以及當(dāng)前Hive的訪問用戶 (CURRENT_USER)和操作(OPERATION)。
在 hive cli 中輸入以下命令:
explain authorization
select variance(s_score) from student_tb_orc;
結(jié)果如下:
INPUTS:
default@student_tb_orc
OUTPUTS:
hdfs://node01:8020/tmp/hive/hdfs/cbf182a5-8258-4157-9194- 90f1475a3ed5/-mr-10000
CURRENT_USER:
hdfs
OPERATION:
QUERY
AUTHORIZATION_FAILURES:
No privilege 'Select' found for inputs { database:default, table:student_ tb_orc, columnName:s_score}
從上面的信息可知:
上面案例的數(shù)據(jù)來源是defalut數(shù)據(jù)庫中的 student_tb_orc表;
數(shù)據(jù)的輸出路徑是hdfs://node01:8020/tmp/hive/hdfs/cbf182a5-8258-4157-9194-90f1475a3ed5/-mr-10000;
當(dāng)前的操作用戶是hdfs,操作是查詢;
觀察上面的信息我們還會看到AUTHORIZATION_FAILURES信息,提示對當(dāng)前的輸入沒有查詢權(quán)限,但如果運行上面的SQL的話也能夠正常運行。為什么會出現(xiàn)這種情況?Hive在默認(rèn)不配置權(quán)限管理的情況下不進(jìn)行權(quán)限驗證,所有的用戶在Hive里面都是超級管理員,即使不對特定的用戶進(jìn)行賦權(quán),也能夠正常查詢。
最后
通過上面對explain的介紹,可以發(fā)現(xiàn)explain中有很多值得我們?nèi)パ芯康膬?nèi)容,讀懂 explain 的執(zhí)行計劃有利于我們優(yōu)化Hive SQL,同時也能提升我們對SQL的掌控力。

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達(dá)AI統(tǒng)治的開始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 “AI寒武紀(jì)”爆發(fā)至今,五類新物種登上歷史舞臺
- 4 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 5 國產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計算迎來商業(yè)化突破,但落地仍需時間
- 7 東陽光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開成長空間
- 8 地平線自動駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機(jī)器人東風(fēng)翻身?