Python中使用機(jī)器學(xué)習(xí)進(jìn)行人體姿勢(shì)
姿態(tài)檢測(cè)是計(jì)算機(jī)視覺(jué)領(lǐng)域的一個(gè)活躍研究領(lǐng)域。你可以從字面上找到數(shù)百篇研究論文和幾個(gè)試圖解決姿勢(shì)檢測(cè)問(wèn)題的模型。
之所以有如此多的機(jī)器學(xué)習(xí)愛(ài)好者被姿勢(shì)估計(jì)所吸引,是因?yàn)樗膽?yīng)用范圍很廣,而且實(shí)用性很強(qiáng)。
在本文中,我們將介紹一種使用機(jī)器學(xué)習(xí)和 Python 中一些非常有用的庫(kù)進(jìn)行姿勢(shì)檢測(cè)和估計(jì)的應(yīng)用。
什么是姿態(tài)估計(jì)?
姿態(tài)估計(jì)是一種跟蹤人或物體運(yùn)動(dòng)的計(jì)算機(jī)視覺(jué)技術(shù)。這通常通過(guò)查找給定對(duì)象的關(guān)鍵點(diǎn)位置來(lái)執(zhí)行。基于這些關(guān)鍵點(diǎn),我們可以比較各種動(dòng)作和姿勢(shì)并得出見(jiàn)解。姿態(tài)估計(jì)在增強(qiáng)現(xiàn)實(shí)、動(dòng)畫、游戲和機(jī)器人領(lǐng)域得到了積極的應(yīng)用。
目前有幾種模型可以執(zhí)行姿態(tài)估計(jì)。下面給出了一些姿勢(shì)估計(jì)的方法:
1.Open pose
2.Pose net
3.Blaze pose
4.Deep Pose
5.Dense pose
6.Deep cut
選擇任何一種模型而不是另一種可能完全取決于應(yīng)用程序。此外,運(yùn)行時(shí)間、模型大小和易于實(shí)現(xiàn)等因素也可能是選擇特定模型的各種原因。因此,最好從一開(kāi)始就了解你的要求并相應(yīng)地選擇模型。
在本文中,我們將使用 Blaze pose檢測(cè)人體姿勢(shì)并提取關(guān)鍵點(diǎn)。該模型可以通過(guò)一個(gè)非常有用的庫(kù)輕松實(shí)現(xiàn),即眾所周知的Media Pipe。
Media Pipe——Media Pipe是一個(gè)開(kāi)源的跨平臺(tái)框架,用于構(gòu)建多模型機(jī)器學(xué)習(xí)管道。它可用于實(shí)現(xiàn)人臉檢測(cè)、多手跟蹤、頭發(fā)分割、對(duì)象檢測(cè)和跟蹤等前沿模型。
Blaze Pose Detector ——大部分姿態(tài)檢測(cè)依賴于由 17 個(gè)關(guān)鍵點(diǎn)組成的 COCO 拓?fù)浣Y(jié)構(gòu),而B(niǎo)laze姿態(tài)檢測(cè)器預(yù)測(cè) 33 個(gè)人體關(guān)鍵點(diǎn),包括軀干、手臂、腿部和面部。包含更多關(guān)鍵點(diǎn)對(duì)于特定領(lǐng)域姿勢(shì)估計(jì)模型的成功應(yīng)用是必要的,例如手、臉和腳。每個(gè)關(guān)鍵點(diǎn)都使用三個(gè)自由度以及可見(jiàn)性分?jǐn)?shù)進(jìn)行預(yù)測(cè)。Blaze Pose是亞毫秒模型,可用于實(shí)時(shí)應(yīng)用,其精度優(yōu)于大多數(shù)現(xiàn)有模型。該模型有兩個(gè)版本:Blazepose lite 和 Blazepose full,以提供速度和準(zhǔn)確性之間的平衡。
Blaze 姿勢(shì)提供多種應(yīng)用程序,包括健身和瑜伽追蹤器。這些應(yīng)用程序可以通過(guò)使用一個(gè)額外的分類器來(lái)實(shí)現(xiàn),比如我們將在本文中構(gòu)建的分類器。
2D 與 3D 姿態(tài)估計(jì)
姿勢(shì)估計(jì)可以在 2D 或 3D 中完成。2D 姿態(tài)估計(jì)通過(guò)像素值預(yù)測(cè)圖像中的關(guān)鍵點(diǎn)。而3D姿態(tài)估計(jì)是指預(yù)測(cè)關(guān)鍵點(diǎn)的三維空間排列作為其輸出。
為姿態(tài)估計(jì)準(zhǔn)備數(shù)據(jù)集
我們?cè)谏弦还?jié)中了解到,人體姿勢(shì)的關(guān)鍵點(diǎn)可以用來(lái)比較不同的姿勢(shì)。在本節(jié)中,我們將使用Media Pipe庫(kù)本身來(lái)準(zhǔn)備數(shù)據(jù)集。我們將拍攝兩個(gè)瑜伽姿勢(shì)的圖像,從中提取關(guān)鍵點(diǎn)并將它們存儲(chǔ)在一個(gè) CSV 文件中。
該數(shù)據(jù)集包含 5 個(gè)瑜伽姿勢(shì),但是,在本文中,我只采用了兩個(gè)姿勢(shì)。如果需要,你可以使用所有這些,程序?qū)⒈3植蛔儭?/p>
在上面的代碼片段中,我們首先導(dǎo)入了有助于創(chuàng)建數(shù)據(jù)集的必要庫(kù)。然后在接下來(lái)的四行中,我們將導(dǎo)入提取關(guān)鍵點(diǎn)所需的模塊及其繪制工具。
接下來(lái),我們創(chuàng)建一個(gè)空的 Pandas 數(shù)據(jù)框并輸入列。這里的列包括由Blaze姿態(tài)檢測(cè)器檢測(cè)到的 33 個(gè)關(guān)鍵點(diǎn)。每個(gè)關(guān)鍵點(diǎn)包含四個(gè)屬性,即關(guān)鍵點(diǎn)的 x 和 y 坐標(biāo)(從 0 到 1 歸一化),z 坐標(biāo)表示以臀部為原點(diǎn)且與 x 的比例相同的地標(biāo)深度,最后是可見(jiàn)度分?jǐn)?shù)。可見(jiàn)性分?jǐn)?shù)表示地標(biāo)在圖像中可見(jiàn)或不可見(jiàn)的概率。
count = 0
for img in os.listdir(path):
temp = []
img = cv2.imread(path + "/" + img)
imageWidth, imageHeight = img.shape[:2]
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
blackie = np.zeros(img.shape) # Blank image
results = pose.process(imgRGB)
if results.pose_landmarks:
# mpDraw.draw_landmarks(img, results.pose_landmarks, mpPose.POSE_CONNECTIONS) #draw landmarks on image
mpDraw.draw_landmarks(blackie, results.pose_landmarks, mpPose.POSE_CONNECTIONS) # draw landmarks on blackie
landmarks = results.pose_landmarks.landmark
for i,j in zip(points,landmarks):
temp = temp + [j.x, j.y, j.z, j.visibility]
data.loc[count] = temp
count +=1
cv2.imshow("Image", img)
cv2.imshow("blackie",blackie)
cv2.waitKey(100)
data.to_csv("dataset3.csv") # save the data as a csv file
在上面的代碼中,我們單獨(dú)遍歷姿勢(shì)圖像,使用Blaze姿勢(shì)模型提取關(guān)鍵點(diǎn)并將它們存儲(chǔ)在臨時(shí)數(shù)組“temp”中。
迭代完成后,我們將這個(gè)臨時(shí)數(shù)組作為新記錄添加到我們的數(shù)據(jù)集中。你還可以使用Media Pipe本身中的繪圖實(shí)用程序來(lái)查看這些地標(biāo)。
在上面的代碼中,我在圖像以及空白圖像“blackie”上繪制了這些地標(biāo),以僅關(guān)注Blaze姿勢(shì)模型的結(jié)果?瞻讏D像“blackie”的形狀與給定圖像的形狀相同。
應(yīng)該注意的一件事是,Blaze姿態(tài)模型采用 RGB 圖像而不是 BGR(由 OpenCV 讀。。
獲得所有圖像的關(guān)鍵點(diǎn)后,我們必須添加一個(gè)目標(biāo)值,作為機(jī)器學(xué)習(xí)模型的標(biāo)簽。你可以將第一個(gè)姿勢(shì)的目標(biāo)值設(shè)為 0,將另一個(gè)設(shè)為 1。之后,我們可以將這些數(shù)據(jù)保存到 CSV 文件中,我們將在后續(xù)步驟中使用該文件創(chuàng)建機(jī)器學(xué)習(xí)模型。
你可以從上圖中觀察數(shù)據(jù)集的外觀。
創(chuàng)建姿勢(shì)估計(jì)模型
現(xiàn)在我們已經(jīng)創(chuàng)建了我們的數(shù)據(jù)集,我們只需要選擇一種機(jī)器學(xué)習(xí)算法來(lái)對(duì)姿勢(shì)進(jìn)行分類。在這一步中,我們將拍攝一張圖像,運(yùn)行 blaze 姿勢(shì)模型(我們之前用于創(chuàng)建數(shù)據(jù)集)以獲取該圖像中人物的關(guān)鍵點(diǎn),然后在該測(cè)試用例上運(yùn)行我們的模型。
該模型有望以高置信度給出正確的結(jié)果。在本文中,我將使用 sklearn 庫(kù)中的 SVC(支持向量分類器)來(lái)執(zhí)行分類任務(wù)。
from sklearn.svm import SVC
data = pd.read_csv("dataset3.csv")
X,Y = data.iloc[:,:132],data['target']
model = SVC(kernel = 'poly')
model.fit(X,Y)
mpPose = mp.solutions.pose
pose = mpPose.Pose()
mpDraw = mp.solutions.drawing_utils
path = "enter image path"
img = cv2.imread(path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
results = pose.process(imgRGB)
if results.pose_landmarks:
landmarks = results.pose_landmarks.landmark
for j in landmarks:
temp = temp + [j.x, j.y, j.z, j.visibility]
y = model.predict([temp])
if y == 0:
asan = "plank"
else:
asan = "goddess"
print(asan)
cv2.putText(img, asan, (50,50), cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,0),3)
cv2.imshow("image",img)
在上面的代碼行中,我們首先從 sklearn 庫(kù)中導(dǎo)入了 SVC(支持向量分類器)。我們已經(jīng)用目標(biāo)變量作為 Y 標(biāo)簽訓(xùn)練了我們之前在 SVC 上構(gòu)建的數(shù)據(jù)集。
然后我們讀取輸入圖像并提取關(guān)鍵點(diǎn),就像我們?cè)趧?chuàng)建數(shù)據(jù)集時(shí)所做的那樣。
最后,我們輸入臨時(shí)變量并使用模型進(jìn)行預(yù)測(cè),F(xiàn)在可以使用簡(jiǎn)單的 if-else 條件檢測(cè)姿勢(shì)。
模型結(jié)果
從上面的圖像中,你可以觀察到模型已經(jīng)正確地對(duì)姿勢(shì)進(jìn)行了分類。你還可以在右側(cè)看到Blaze姿勢(shì)模型檢測(cè)到的姿勢(shì)。
在第一張圖片中,如果你仔細(xì)觀察,一些關(guān)鍵點(diǎn)是不可見(jiàn)的,但姿勢(shì)分類是正確的。由于Blaze姿態(tài)模型給出的關(guān)鍵點(diǎn)屬性的可見(jiàn)性,這是可能的。
結(jié)論
姿勢(shì)檢測(cè)是機(jī)器學(xué)習(xí)領(lǐng)域的一個(gè)活躍研究領(lǐng)域,并提供了多種實(shí)際應(yīng)用。在本文中,我們嘗試開(kāi)發(fā)一個(gè)這樣的應(yīng)用程序,并通過(guò)姿勢(shì)檢測(cè)來(lái)解決問(wèn)題。
我們了解了姿勢(shì)檢測(cè)和幾個(gè)可用于姿勢(shì)檢測(cè)的模型。出于我們的目的選擇了 blaze 姿勢(shì)模型,并了解了它相對(duì)于其他模型的優(yōu)缺點(diǎn)。
最后,我們使用 sklearn 庫(kù)中的支持向量分類器構(gòu)建了一個(gè)分類器來(lái)對(duì)瑜伽姿勢(shì)進(jìn)行分類。為此,我們還構(gòu)建了自己的數(shù)據(jù)集,可以使用更多圖像進(jìn)一步擴(kuò)展。
你也可以嘗試其他機(jī)器學(xué)習(xí)算法而不是 SVM,并相應(yīng)地比較結(jié)果。

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
3月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
4月30日立即下載>> 【村田汽車】汽車E/E架構(gòu)革新中,新智能座艙挑戰(zhàn)的解決方案
-
5月15-17日立即預(yù)約>> 【線下巡回】2025年STM32峰會(huì)
-
即日-5.15立即報(bào)名>>> 【在線會(huì)議】安森美Hyperlux™ ID系列引領(lǐng)iToF技術(shù)革新
-
5月15日立即下載>> 【白皮書】精確和高效地表征3000V/20A功率器件應(yīng)用指南
-
5月16日立即參評(píng) >> 【評(píng)選啟動(dòng)】維科杯·OFweek 2025(第十屆)人工智能行業(yè)年度評(píng)選
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達(dá)AI統(tǒng)治的開(kāi)始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 4 “AI寒武紀(jì)”爆發(fā)至今,五類新物種登上歷史舞臺(tái)
- 5 國(guó)產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計(jì)算迎來(lái)商業(yè)化突破,但落地仍需時(shí)間
- 7 東陽(yáng)光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開(kāi)成長(zhǎng)空間
- 8 地平線自動(dòng)駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營(yíng)收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機(jī)器人東風(fēng)翻身?