Waymo首席科學(xué)家在MIT自動(dòng)駕駛課上開講:如何解決自動(dòng)駕駛的長(zhǎng)期挑戰(zhàn)
經(jīng)典MIT的Deep Learning for Self-driving Car課程上,邀請(qǐng)到了Waymo首席科學(xué)家Drago Anguelov,分享題為“Taming The Long Tail of Autonomous Driving Challenges(馴服自動(dòng)駕駛的長(zhǎng)尾挑戰(zhàn))”,主要是講在現(xiàn)實(shí)世界中的Long Tail現(xiàn)象,各種異常情況該如何收集、融合、發(fā)布和測(cè)試。
知乎@黃浴總結(jié)了此課程的一些新看點(diǎn):
1. 題目是“長(zhǎng)尾”處理;
2. 可以處理道路維修場(chǎng)景;
3. 可以識(shí)別特殊車輛(警車/救護(hù)車/消防車);
4. 可以預(yù)防闖紅燈的車輛;
5. 可以對(duì)馬路自行車行為軌跡預(yù)測(cè);
6. 通過(guò)NAS學(xué)習(xí)模型;
7. 不完全依賴機(jī)器學(xué)習(xí),可以利用專家知識(shí)(domain knowledge);
8. 不是E2E學(xué)習(xí)駕駛行為,而是Mid-2-Mid,就是最近的ChauffeurNet;
9. 學(xué)習(xí)的行為預(yù)測(cè)有自適應(yīng)性,比如激進(jìn)的或者溫和禮貌的;
10. 仿真不能解決所有問(wèn)題,仿真系統(tǒng)需要更多的agent model,要smart。
下面是智車科技對(duì)本次分享的視頻解讀及PPT:
我畢業(yè)于斯坦福大學(xué)博士學(xué)位,曾研究機(jī)器人相關(guān)領(lǐng)域,F(xiàn)在Google帶領(lǐng)團(tuán)隊(duì)研究3D感知,以此來(lái)構(gòu)建一個(gè)全新的自動(dòng)駕駛感知系統(tǒng)。
Waymo這家公司截止上個(gè)月已經(jīng)成立了十周年了(2009年成立)它起源于Google X。
2015年,我們研發(fā)的這款自動(dòng)駕駛汽車進(jìn)行公路路測(cè)試驗(yàn),這是世界上第一輛成功實(shí)現(xiàn)自動(dòng)駕駛的汽車。在這個(gè)案例中,坐在車?yán)锏娜耸莻(gè)盲人,我們認(rèn)為這個(gè)項(xiàng)目的意義重大。所以我們不僅僅希望這臺(tái)車只是一個(gè)成功的演示案例,我們更加希望能夠?qū)崿F(xiàn)無(wú)人駕駛。
我將給你們展示一個(gè)很酷的視頻。你們看,這臺(tái)汽車真的在自己行駛在公路上。2018年,自動(dòng)駕駛商業(yè)化,這臺(tái)車學(xué)習(xí)了很多司機(jī)用戶的駕駛習(xí)慣,使它自身?yè)碛袕?qiáng)大的自動(dòng)駕駛能力。它也成功的在公路上自主行駛(無(wú)人駕駛狀態(tài))超過(guò)10,000,000,000公里。我們的路測(cè)實(shí)驗(yàn)幾乎涵蓋了所有的不同城市的駕駛場(chǎng)景,收集了很多駕駛數(shù)據(jù)。
我想解釋一下為什么今天的演講的題目是“項(xiàng)目的長(zhǎng)尾問(wèn)題”。因?yàn)槲覀冊(cè)谧詣?dòng)駕駛這條路上,我們還有很多問(wèn)題需要處理和解決,才能使得自動(dòng)駕駛更加完善。
自動(dòng)駕駛系統(tǒng)要求有足夠的能力,在沒有人類司機(jī)干預(yù)的情況下,安全地處理所有的突發(fā)情況。
事實(shí)上,突發(fā)的異常情況總是發(fā)生,而且這些異常情況經(jīng)常是比較復(fù)雜且少見的,而自動(dòng)駕駛就是要安全的解決這些突發(fā)的復(fù)雜且少見的情況。這就是我所說(shuō)的“長(zhǎng)尾巴情況”,它不同于在常見的場(chǎng)景中的自動(dòng)駕駛,而這種復(fù)雜且少見的駕駛場(chǎng)景在自動(dòng)駕駛領(lǐng)域確實(shí)非常重要。
我們來(lái)看這場(chǎng)景,畫面中騎自行車的人帶著一塊“停止”的標(biāo)志牌。但是我們并不知道他會(huì)停在哪里,什么時(shí)候停下。
我們?cè)賮?lái)看這個(gè)場(chǎng)景,有東西掉在路上了,周圍的建筑也是一個(gè)問(wèn)題。
現(xiàn)實(shí)中存在很多不同的場(chǎng)景和不同的問(wèn)題,像這個(gè)視頻中,我們的車輛聽到了其他車輛的鳴笛聲音,那么如何處理這個(gè)鳴笛的聲音,這些都需要很好的(安全的)解決掉。
那么我們是如何解決這些問(wèn)題的呢?
首先是,感知。我們利用傳感器感知周圍環(huán)境,并在屏幕上顯示(可以顯示周圍的建筑、環(huán)境等等),以此重新構(gòu)建一個(gè)地圖。
感知的復(fù)雜性包括,在路上,有很多不同的物體,他們有不同的形狀、顏色、狀態(tài)。比如,有不同樣式的信號(hào)燈,路上有動(dòng)物和行人,行人還會(huì)穿著不同顏色的衣服,有不同的姿勢(shì)狀態(tài)。為了清晰的觀察到這些,我們裝置了很多傳感器,來(lái)解決這個(gè)問(wèn)題。
感知的復(fù)雜性還包括,很多不同的環(huán)境。比如,一天當(dāng)中不同的時(shí)間段(白天/黑夜),不同的季節(jié),不同的天氣下雨或者下雪。這些都需要識(shí)別。
感知的復(fù)雜性還包括,不同的場(chǎng)景配置,或者叫物體之間的關(guān)系識(shí)別。不同的搭配就有不同的物體之間的關(guān)系,比如圖片中,一個(gè)人拿著一塊巨大的板子,第二幅圖中,玻璃中有反光現(xiàn)象,第三幅圖中人騎著馬等等不同的場(chǎng)景和關(guān)系。
這種映射功能是一個(gè)非常復(fù)雜的功能,這是由物體、環(huán)境、場(chǎng)景配置共同決定的。
所以這需要我們?cè)谟^察周圍環(huán)境的基礎(chǔ)上做出預(yù)判,對(duì)周邊人和物體的下一個(gè)動(dòng)作做出預(yù)判,即我們要對(duì)短時(shí)間內(nèi)發(fā)生的事情做出一個(gè)預(yù)測(cè)。
發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
圖片新聞
技術(shù)文庫(kù)
最新活動(dòng)更多
-
3月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
免費(fèi)參會(huì)立即報(bào)名>> 7月30日- 8月1日 2025全數(shù)會(huì)工業(yè)芯片與傳感儀表展
-
精彩回顧立即查看>> 【線上直播】新能源汽車熱管理行業(yè)應(yīng)用新進(jìn)展
-
精彩回顧立即查看>> 【線上直播】西門子電池行業(yè)研討會(huì)-P4B如何加速電池開發(fā)
-
精彩回顧立即查看>> 【線下會(huì)議】OFweek 2024(第九屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
-
精彩回顧立即查看>> 【線下論壇】華邦電子與萊迪思聯(lián)合技術(shù)論壇
-
910 瘋狂智駕,踩下“剎車”
- 1 2025上海車展看什么?看這一篇就夠了!
- 2 關(guān)稅大戰(zhàn),汽車芯片會(huì)漲價(jià)嗎
- 3 工信部召開智能網(wǎng)聯(lián)汽車產(chǎn)品準(zhǔn)入及軟件在線升級(jí)管理工作推進(jìn)會(huì)提的內(nèi)容,將如何影響智駕行業(yè)發(fā)展?
- 4 地平線智駕方案軟硬結(jié)合,大眾、保時(shí)捷的合作紛至沓來(lái)
- 5 高呼的“全民智駕”真的做到“全民”了嗎?
- 6 一季度汽車產(chǎn)量省份排名大洗牌!誰(shuí)在異軍突起?
- 7 奇瑞的混動(dòng)技術(shù):厚積薄發(fā),從發(fā)動(dòng)機(jī)到混動(dòng)系統(tǒng)
- 8 中國(guó)汽車發(fā)展頂層設(shè)計(jì)思路 - 萬(wàn)鋼主席2025百人會(huì)核心內(nèi)容總結(jié)
- 9 東風(fēng)+華為,還是華為借東風(fēng)?華為ADS3.0技術(shù)詳解
- 10 工信部對(duì)浮躁的智駕說(shuō)“不”
